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Abstract: Cloud Computing has revolutionized businesses and individuals needs by outsourcing computations and 

storage providing significant cost-effectiveness and flexibility. With its rapid development, the security and privacy are 

the primary concerns. The homomorphic encryption techniques have provided a good potential in mitigating these 

issues in recent years. It allows the cloud to perform blind-computations on the encrypted inputs uploaded by the user 

without prior decryption and return the encrypted results, which can only be decrypted by the user who initiates the 

proceedings. Thus, clients can rely on the cloud services without compromising the privacy. Some classical, as well as 

recent practical homomorphic schemes and their algorithms, are discussed in this paper. The main focus is to provide 

the reader good background knowledge on various schemes for applications in context to practical implementations 

based on their scope, performance, security and complexity factors. 
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I. INTRODUCTION 

 

Cloud computing is termed as “platform for future’s 

computation”. The global computing infrastructure is 

rapidly moving towards cloud based architecture so as to 

expand their business. It seems to give a number of 

benefits like flexibility, efficiency, scalability, integration, 

and capital reduction. But security is one of the main 

challenges that hinder the growth of cloud computing. 

Researchers and Service provider are trying out different 
techniques to gain the trust from clients [1]. Some 

malicious elements always try to peek inside its 

architecture. Due to this, a client considers cloud platform 

as a threat and wants to keep his data confidential even 

from a service provider. A possible solution is to perform 

encryption such that, computation can be directly applied 

to encrypted data by cloud services. Homomorphic 

encryption provides a great potential for the privacy and 

encrypted computations in the cloud. This paper is aimed 

at providing the reader background knowledge about 

various homomorphic schemes for their application in the 

cloud ecosystem. 
 

In Section II, we briefly introduce cloud computing, its 

basic services, and the security concerns related to it. 

Section III presents the basics of homomorphic encryption 

and its properties. Later in Section IV and V, we present a 

comparative literature survey on the limited homomorphic 

encryption algorithms and FHE schemes with their 

limitations respectively. 

 

II. CLOUD COMPUTING AND SECURITY 

 
Before the advent of Cloud terminology, the computing 

was done using “outsourcing” and “server hosting”. 

However, their performances were low in terms of cost 

and maintenance of hardware and computing resources.  

 

 

With the recent developments in Virtualization technology 

paved the way for efficient, on-demand, cost-effective 

services in the cloud [1]. 

 

In a typical cloud architecture, the resources are generally 

owned by a service provider with remote access to users 

via the internet or a private network. The resources are 

powered by distributed and parallel computing 
incorporating to each other's IT infrastructures (hardware, 

platform, software).  Thus providing quick, convenient 

data storage and net computing service with reliance on 

the Internet. 

 

There are three standard service models as per NIST for 

cloud computing [2]: 

 

 Software as a Service (SaaS): This is software 

distribution model. The applications are hosted by the 

service providers and offered as a subscription to the 

users via the Internet. It is accessible via various 
interfaces and provider does not manage or control the 

underlying cloud infrastructure.  

 Platform as a Service (PaaS): This refers to the delivery 

of operating systems and relevant services over the 

Internet without downloads or installation. The user 

can deploy their applications using these services and 

tools by the provider. The user has no manage or 

control over the underlying cloud infrastructure. 

 Infrastructure as a Service (IaaS):  This involves 

outsourcing the physical infrastructures used for 

storage, hardware, support operations and network 
components accessible over a network. The user has no 

manage or control over the underlying cloud 

infrastructure but has some control over OS and 

storage. 
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Although Cloud computing has become a matured service 

model, but it still has some significant barriers to adoption. 

One of the main concerns are issues related to security and 

privacy. The SaaS, PaaS, and IaaS gradually release the 

responsibility of security control to the cloud users in 
order. The SaaS model relies on the cloud provider for all 

security functions while the PaaS model on the provider to 

for data integrity and availability, but loads the user for 

confidentiality and privacy control. These leads to two 

sensitive states that are a concern in the operational 

context of cloud computing: 

 

 Transmission phase – transfer of the sensitive data to 

and from the cloud servers and the client systems. 

 Static phase – the storage and operations performed in 

cloud servers on the client’s personal data. 
 

 
Fig 1: Secure Cloud computing using Homomorphic 

scheme 

 

The channel of data transmission is well secured with 

cryptographic key exchanges. The cloud user can encrypt 

the data and store it in the cloud, however, both the user 

and the cloud would not be able to operate any 

computations on data before decrypting it, moreover the 
cloud provider will not be able to respond to users' queries 

before decrypting the data first. Considering cloud can be 

untrustworthy, the client would not consider it reliable 

over accessing their personal data. 

The power that homomorphic encryption brings to 

preserve privacy in cloud computing is its ability to 

perform computations on the encrypted data without the 

need for decrypting it and users to retrieve results that can 

only be decrypted using his secret key 

 

III. HOMOMORPHIC ENCRYPTION 
 

This section presents an introduction to the homomorphic 

encryption, its terminologies, and notations. 

 

A. Background on Encryption 

Let a message m ∈ M where M denotes the message space 

and σ be the security parameter. A public-key encryption 

scheme on M is based on a set of three functions (K, E, D) 

of probabilistic, polynomial time satisfying the following 

functionalities: 

 

 Key Generation: Based on security parameter the 

algorithm K outputs a key pair k =  pk, sk , where pk 
denotes the encryption key/ public key and sk being the 

decryption key /secret key. 

 Encryption: The encryption algorithm E inputs a 

message m ∈ M and a public key pk, outputs a 

ciphertext E m, pk = c ∈ C, where C denotes the 

ciphertext space. 

 Decryption: The decryption algorithm D inputs a 

ciphertext c ∈ C and a secret key sk, outputs the 

message D c, sk = m ∈ M. 

 

B. Homomorphic Property 

In mathematics, homomorphic describes the 

transformation of one data set into another while 

preserving relationships between elements in both sets. 

Hence, performing encryption homomorphically will yield 

equivalent results whether they are performed in encrypted 

or decrypted data. 

More precisely, an encryption scheme is said to be 

homomorphic for some operations ◦ ∈  M acting in 
message space M (such as addition) if there are 

corresponding operations ⋄ ∈  C acting in cipher text space 

satisfying the property [5]: 

Dec(sk, Enc(pk,m1) ⋄ Enc(pk,m2)) = m1 ◦ m2 

If the operation ◦ ∈  M is additive {+}, then the scheme is 

said to be additively homomorphic and multiplicative 

homomorphic if ◦ ∈  M is multiplicative {*}. 

The evaluation algorithm Eval inputs ciphertexts c1, c2 

outputs c3 = Eval(c1, c2) such that D(c3, sk) = m3, where 

m3 = m1◦ m2 , the desired message according to operation 
applied. 

 

IV. LIMITED HOMOMORPHIC ENCRYPTION 

 

In this section we look at classical homomorphic 

encryption schemes limited to partial operations namely, 

either additive or multiplicative such as RSA, Pallier, El 

Gamal schemes and discuss their properties and 

algorithms. 

 

A. RSA Cryptosystem 
Before RSA was developed, the symmetric ciphers were 

used to encrypt, send and decrypt a message using a single 

key. It was possible that intruder may attack, it requires 

the users to send the key hand to hand, which is not 

possible always. Solution to this problem comes when 

RSA was invented. 
 

RSA was the first public–key cryptosystem  which uses 

two keys, the first public key which is known to everyone 

is used  to encrypt a message, and second a secret key, 

which only target user holds and with its help only, he can 

decrypt the encrypted message. Basic RSA is a 

multiplicatively homomorphic encryption scheme and is 

deterministic in the sense that under a fixed public key, a 
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plaintext m is always encrypted to the same ciphertext 

E(m). It is widely used to transmit data securely. It was 

introduced by Rivest, Shamir, and Adleman [6]. 

 

Algorithm: 
(1). Key Generation: 

 Generate  two large distinct prime numbers, p, and q 

(should be similar in magnitude).  

 Compute n=p*q, where n is the key(both) length 

 Compute  Euler’s totient  function on n,                               

υ(n) = υ(p)υ(q) = (p − 1)(q − 1) = n − (p + q − 1) 

 Choose a number  e ,s.t  e must lie between (1, υ(n)),& 

i and υ(n) are coprime; i.e. gcd(e, υ(n)) = 1. 

 Compute modular multiplicative inverse of e modυ(n)  

i.e. e−1 (mod υ(n)) and name it d, d.e=1(mod 

υ(n),equivalent to d.e =k.υ(n) + 1. 

 Now pk = e and sk = d with n as the common modulus. 

 

(2). Encryption: 

 Let M be the message and (e,n) be the  public key 

 First, convert M into an integer m  s.t. m є [0,n)  & 

gcd(m,n)=1. 

 Compute ciphertext , E(m)=me(mod n) 

 

(3).Multiplicative Homomorphic operation : 

 Let E(m1) and E(m2) be the two ciphertext , E(m1)= 

m1e(mod n)E(m2)= m2e(mod n) 

 E(m1).E(m2) = m1e. m2e ( mod  = (m1 ∙ m2)e mod n 

=c3, where c3 is the encryption of (m1.m2) .  

 

(4).Decryption: 

 Cipher text c,when raised to the power d(private key)  

with (mod n) gives the required message  

 E(m) d=(me.d)mod n =(mk.υ(n)+1)mod n = ((mυ(n) ) k 

.m)mod n ≡ 1k .m (mod n) = m (using Euler and Fermat 

theorem,   for any integer M coprime to n, we have , M 
υ(n) ≡ 1 (mod n))) 

 
Limitation: 

It is not semantically secure. It is a relatively slow 

algorithm and even when the public key is very large 

enough, someone with knowledge of prime numbers can 

easily retrieve the actual message from the encrypted 

message. 

 

B. Elgamal (Multiplicative Homomorphic encryption) 

It is a partially homomorphic public key encryption 

algorithm as it supports only multiplicative homomorphic 

property and is based on the Diffe-Hellman key exchange. 
It was designed by Taher Elgamal [7]. 

 

Algorithm: 

(1). Key generation: 

 Generate a large prime p, s.t  (p-1) is  divisible by 

another large prime q. 

 Compute a  generator   g of the multiplicative group   

of order q in GF(p)     via (for some random r) g ≡ r (p-

1)/qmod p         until   g≠1. 

 Select a natural number 'a' in range of q 

 Compute  h≡g
a 
(mod p) 

 Now, pk=(p,g,h) and sk = a 

 
(2). Encryption: 

 Generate a random number  k (1 < k < q − 1) with 

gcd(k, p − 1) = 1 

 Compute  r ≡ g k mod p  and s ≡  hk ·m (mod p) (0 ≤ m 

≤ p − 1) 

 Ciphertext :  c= E(m)=(r,s) 

 

(3). Homomorphic operation: 

 Let E(m1) and E(m2) be two cipher texts 
 E(m1).E(m2)=(gr1, m1.hr1) (gr2, m2.hr2)= (gr1+r2, 

(m1.m2) hr1+r2 )  = E(m1.m2) 

 

(4). Decryption: 

 Compute:   m ≡ s·r -amod p    ( r -a ≡ g-ka ≡ h -k mod p) 

 

Limitation: 

This homomorphism is multiplicative whereas practical 

such as E-cash and e-voting application requires addition 

also. One solution to this to Modify ElGamal : Put the 

plaintext in the exponent, E(m)=( r≡ g k (mod p)  ,s≡ hk ·gm 

(mod p)) . This modification introduces the discrete 

logarithm problem   dk = gm into the decryption. For large 

enough texts, this becomes impractical.           
 

C. Paillier(Additive Homomorphic encryption) 

It is a probabilistic, additive homomorphic encryption 

algorithm and invented by Pascal Paillier in 1999. It is 

based on decisional composite residuosity assumption [8]. 

 

Algorithm: 

(1). Key generation: 

 Choose two large prime number p and q 

 Compute   n= p.q     and      y= lcm(p-1,q-1) 

 Choose random number g where  g є Zn 

 Check the existence of modular multiplicative inverse : 

 u=( L(gy mod n2))-1 mod n 

 pk  = (n,g)   and    sk = (y,u) 
 

(2). Encryption:   

 Choose an integer “r” 

 Compute    c = E(m)= gm .rn(mod n2) 
 

(3).Homomorphic operation: 

 E(m1).E(m2)=( gm1 .r1n )( gm2 .r2n)mod n2 = g(m1+m2) 

(r1.r2)n mod n2 =E(m1+m2) 

 

(4). Decryption: 

 Compute:  m = L(c
y
 mod n 2)/ L(g

y
 mod n2) mod n    

=L(cy mod n 2).u mod n 
 

Limitation 

It supports only addition cryptographically, and for 

multiplication, it requires to use two-party computation 

which makes it dependent and even are limited in number. 
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V. FULLY  HOMOMORPHIC ENCRYPTION 

 

Classical homomorphic encryption schemes described in 

the previous section supports some operations on 

ciphertext (e.g. addition, multiplication, quadratic 
function. etc.), whereas fully homomorphic encryption 

support arbitrary computation. As it never requires to 

decrypt its input, it creates practical opportunity to 

outsource private computation of client's sensitive data on 

a untrusted third party. 

 

A. Gentry’s Cryptosystem 

Gentry's scheme supports both addition and multiplication 

operations on ciphertexts. Using these elementary 

operations, any function can be computed. It is based on 

lattices. 
 

It is limited to some extent, as noise increase exponentially 

and when it reaches a threshold, resulting ciphertext is 

indecipherable. Gentry introduced bootstrappable 

somewhat homomorphic encryption which refreshes  the 

ciphertext repeatedly, resulting in a new ciphertext with  

lower noise [9]. 

 

Algorithm: 

(1).Key Generation: 

 Takes as input a security parameter λ and a positive 

integer d as the depth of circuit . For length, l = l(λ) . 

 Sets (ski, pki ) ← KeyGen (λ)           for i ∈ [0, d] 

  skij ← EncryptE (pki-1 , skij ) for i ∈ [1, d], j ∈ [1, l`] 
where ski1, . . , skil` is the bit representation of ski . 

 sk(d) = sk0    and  pk(d) ← (<pki >,<skij >). 
 
(2).Encryption:  

 Input a public key pkd and a plaintext π ∈ P. 

 Ciphertext ψ ← Encrypt (pkd , π). 
 

(3).Decryption: 

 Input a secret key skd and a ciphertext ψ (which should 

be an encryption under pk0 ).  

 Outputs Decrypt (sk0, ψ). 

 

(4).Evaluation: 

 Takes as input a public key pkυ , a circuit Cυ of depth 

at most υ  gates , and a tuple of input ciphertexts Ψυ 

(where each input ciphertext should be under pkυ ). 

 Check if each wire in Cυ  connects gate at consecutive 
levels; if not add identity gates . 

 If  υ=0 ,   it outputs , ψ0 and terminates, 

Else      

- Sets (Cϯ
υ-1 ,ψ

ϯ
υ-1 )←Augment υ(pkυ ,Cυ, ψυ) 

- Sets  (Cυ-1 ,ψυ-1 )←Reduceυ-1(pkυ ,Cυ, ψυ) 

- Evaluateυ-1 (pkυ-1 ,Cυ-1, ψυ-1) 

 

(5). Augmentυ : 

 Takes as input a public key pkυ , a circuit Cυ of depth 

at most υ  gates , and a tuple of input ciphertexts Ψυ 

(where each input ciphertext should be under pkυ ). 

 Let ψϯ
υ-1 be the tuple of cipher texts formed by 

replacing each input ciphertext ψ ∈ ψυ by the tuple (skυ 

, ψυ), where ψj ← Encrypt ((pkυ-1), ψj ) and the ψj 's 

from the properly-formatted representation of ψ as 
elements of P. It outputs (Cϯ

υ-1 ,ψ
ϯ
υ-1 ). 

 

(6). Reduceυ : 

 Takes as input a public key pkυ , a circuit Cυ of depth 

at most υ  gates , and a tuple of input ciphertexts Ψυ . 

 sets Cυ to be the sub-circuit of Cϯ
υ consisting of the 

first υ levels 

 sets ψυ  to be the induced input ciphertext of Cυ . 

 

Limitation: 

The scheme is impractical, as increasing key size results in 
a large jump in the graph of ciphertext size and thus, the 

computation time. 

  

B.  DGHV (Somewhat) Homomorphic Scheme 

Van Dijk, Gentry, Halevi and Vaikuntanathan’s (DGHV) 

scheme[10] described a conceptually simpler “somewhat 

homomorphic” using only modular arithmetic over the 

integers. The security of the scheme is reduced to finding 

an approximate integer greatest common divisors 

(approximate GCD) problem. This scheme can be applied 

to Gentry’s “blueprint” for constructing fully 

homomorphic schemes out of certain somewhat 
homomorphic schemes specifically, by “squashing the 

decryption circuit” and applying Gentry’s bootstrapping 

theorem. Depending upon the security parameter λ, the 

scheme uses polynomials in λ as four parameters: 

 

γ - bit-length of the integers in the public key pk, 

η - bit-length of the secret key, 

ρ - bit-length of the noise in KeyGen, 

ρ’- bit-length of the noise in Encrypt (secondary noise 

parameter), 

τ - number of integers in the public key. 
The parameters must follow the following constraints [10]: 

 

 ρ = ω(log λ), to protect against brute-force attacks on 

the noise;  

  η ≥ ρ · Θ(λ log2 λ), in order to support homomorphism 

for deep enough circuits to evaluate the “squashed 

decryption circuit”; 

  γ = ω(η 2 log λ), to thwart various lattice-based attacks 

on the underlying approximate-gcd problem; 

 τ ≥ γ + ω(log λ),  (see Lemma 4.3 in [DGHV10]); 

 ρ’ = ρ + ω(log λ), used as secondary noise parameter. 
 

A suitable set of parameters is ρ = λ, ρ’ = 2λ, η = O(λ2 ), γ 

= O(λ 5 ) and τ = γ + λ.  

 

Definition (approximate GCD): Given polynomially many 

samples from Dγ,ρ(p) for a randomly chosen η-bit odd 

integer p, output p. 

Dγ,ρ(p) = {choose q ← Z ∩ [0, 2 γ /p), r ← Z ∩ (−2 ρ , 2 ρ 

) : output x = pq + r }. 
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Algorithm: 

(1). KeyGen(λ): The secret key is a random odd η-bit 

integer: 

     sk := p ∈ (2Z + 1) ∩ [2η−1 , 2 η ). 
     For the public key,  

 sample xi ∈ Dγ,ρ(p) for i = 0, . . . , τ . 

 Relabel xi so that x0 is the largest.  

 Restart unless x0 is odd and rp(x0) is even. The            

public key is  pk = {x0, x1, . . . , xτ}.  

 

(2). Encrypt (pk, m ∈ {0, 1}) = c.  

 Choose a random subset S ⊆ {1, 2, . . . , τ}, 

 A random integer r in Z ∩ (−2ρ ′ , 2ρ ′ ), 

 Compute ciphertext c = (m + 2r0 + 2∑i∈S xi) mod x. 
 

(3). Evaluate(pk, C, c1, . . . , ct) = c*:  

 Given the (binary) circuit  CE with t inputs, and t   

ciphertexts ci, apply the addition and multiplication 

operations on the ciphertext according to the circuit 

CE, and return the resulting integer. 

 

(4). Decrypt(sk, c) = m 
Output m′ = (c mod p) mod 2. 

 

Limitation: 

This was fairly an easy scheme as it used only elementary 

modular arithmetic rather than lattice based encryption to 

generate FHE. Some open problems posed by the scheme 

were related to compressing the squashing and improving 

the efficiency while preserving the hardness of the 

approximate-gcd problem. The size of the public key pk is 

around 260 bits which was its main drawback. 

 

C. BGV (Leveled) Fully Homomorphic Encryption 
The resulting performance out of Gentry’s bootstrapping 

were unsatisfactory and all the existing FHE schemes gave 

exponential noise growth with depth of the circuit 

requiring almost Ω ( λ 
3.5

) computation per gate. Brakerski, 

Gentry, and Vaikuntanathan introduced the notion of 

leveled fully homomorphic encryption schemes [11]. The 

scheme constructs a much effective approach for lattice-

based ciphertext using FHE schemes based on LWE 

(learning with errors) or ring LWE (RLWE) problems that 

have 2λ security reducing the per-gate computation to O(λ. 

L3) , O(λ2 ) and O(λ) respectively as described in table 1. 
 

Typically, BGV proved to be the first scheme practical in 

real-life applications. It describes several improvements to 

Gentry's original work namely, modulus switching and re-

linearisation techniques for reducing the noise growth in 

multiplication and to growth in ciphertext sizes as shown 

in table 1. 
 

Definition - Generalised Learning with Errors(GLWE): 

For security parameter λ, let n = n(λ) be an integer 

dimension, let f(x) = x d + 1,d = d(λ) is a power of 2, let q 

= q(λ) ≥ 2 be a prime integer, let R = Z[x]/(f(x)) and Rq = 
R/qR, and let χ = χ(λ) be a distribution over R. The 

GLWEn,f,q,χ problem is to distinguish the following two 

distributions: In the first distribution, one samples (ai, bi) 

uniformly from Rq
 n+1 . In the second distribution, one first 

draws s ← R n
 q uniformly and then samples (ai, bi) ∈ Rq

 n+1 

by sampling ai ← R n q uniformly, ei ← χ, and setting bi = 
‹ai, s› + ei. The GLWEn,f,q,χ assumption is that the 

GLWEn,f,q,χ problem is infeasible. 

 

TABLE 1: Classifying versions of BGV measured on the 

basis of security parameter λ [11]. 

 

FHE 

before 

BGV 

Bootstrapping Ω( λ 3.5 )             Exponential 

Leveled 

BGV 1 

Without 

bootstrapping 

O(λ. L3) Quasi-

linear 

Leveled 

BGV 2 

With boot 

strapping as 

optimization  

O(λ2)  

independent 

of depth L 

Quasi-

polynomial 

Leveled 
BGV 3 

Batched 
bootstrapping 

O(λ) 
independent 

of depth L 

Linear 

 

Algorithm: 
 (1). E.Setup: 

 Input security parameter λ, a number of levels L, and a 

bit b ∈ {0, 1} for deciding between LWE or RLWE 

 Choose µ-bit modulus q for parameters d = d(λ, µ, b), n 

= n(λ, µ, b), and χ = χ(λ, µ, b). 

 R = Z[x]/(x d + 1) and params = (q, d, n, N, χ) 
 

(2). E.SecretKeyGen: 

 Input params 

 Sample s’← χn  

 Set sk = s ← (1, s’[1], . . . , s’[n]) ∈ R n+1 
q.  

   
(3). E.PublicKeyGen: 

 Inputs params and sk 

 Generate matrix A’ ← R
NxM 

q  and vector e ← χ 
N 

. 

 Set b ← A’s’ + 2e, A to be (n+1)-columned consisting 

of b followed by n columns from –A’. 

 Set the public key pk = A. 

 

(4). E.Encrypt : 

 Input params, pk, and message m ∈ R2 . 

 Set m ← (m,0,…….,0) ∈ R n+1 
q . 

 Sample r ← RN
2 . 

 Output ciphertext c  ← m + AT r ∈ R n+1 
q . 

(5). E.Decrypt : 

 Output m ← [ [(c,s)]q ]2 . 

 

Implementation: 

Halevi and Shoup’s HElib implemented the BGV scheme 

and proved to be the foremost among all the 

implementations [13]. Several optimizations such as 

ciphertext packing have been introduced to make 

homomorphic encryption practically faster. In 2014, 

bootstrapping was introduced in the library [14]. Multi-

threading support was provided in March 2015. 
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Limitations: 

The BGV scheme was performed on homomorphic 

evaluation of the AES circuit [15]. But to evaluate the 

circuit using the modulus switching technique, the public 

key required multiple versions evaluation-keys that need 
to be shared between the client (data owner) and the 

server(computing entity). Hence, very large memory 

requirements for storing the public key. 

 

D. Towards Scale Invariant Fully Homomorphic 

Encryption 

Brakerski provided a new notion of scale-invariance for 

leveled homomorphic encryption schemes[12]. Unlike 

modulus switching, the cipher-texts in this scheme keep 

the same modulus during the whole homomorphic 

evaluation and only one scale invariant evaluation key has 
to be stored.  

 

This technique has been adapted to the BGV scheme by 

Fan and Vercauteren [17] called as FV scheme and to 

L´opez-Alt, Tromer and Vaikuntanathan’s scheme [16] by 

Bos, Lauter, Loftus, and Naehrig [18] called as YASHE 

scheme respectively. A comparative work has been 

theoretically done and applied on a lightweight block 

cipher SIMON between both the scheme [19]. It is 

observed that FV has a smaller noise growth as compared 

to YASHE while the latter is faster in terms of 

performance. 
 

Fully Homomorphic Scheme FV 

Fan and Vercauteren [17] applied the scale- invariant 

technique introduced by Brakerski in [12] to the RLWE. 

Using the message encoding as in RLWE encryption 

scheme, we can avoid the modulus switching to obtain a 

leveled homomorphic encryption scheme. A brief 

description is given below. 

 

Algorithm: 

(1).FV.ParamsGen: 

 Inputs security parameter λ. 

 Set a positive integer d. 

 Determine R, moduli q and t, distributions χkey, χerr on 

R, and an integer base w > 1. 

 Output params = (d,q,t, χkey, χerr, w). 

 

(2). FV.KeyGen: 

 Input params. 

 Sample s ← χkey, a ← Rq(uniformly,random), e ← χerr   

 Compute b = [-(as + e)]q  . 

 Sample , a ← Rq 
lw,q (uniformly,random), e ← χerr 

lw,q . 

 Compute γ = ( [PowersOfw,q(s
2) − (e + a · s) ]q, a ) ∈ Rq 

lw,q . 

 Output (pk, sk, ek)  = ((b, a), s, γ). 

 

(3). FV.Encrypt: 

 Input ((b, a), m), m ∈ R/tR. 

 Sample u ← χkey, e1 and e2 ← χerr  . 

 Output c = ( [∆[m]t + bu + e1]q, [au + e2]q ) ∈ R2 . 

 

(4). FV.Decrypt: 

 Input s, c = (c0, c1). 

 Output m = = hj t q · [c0 + c1s]q mi t ∈ R 
 

(5). FV.Add: 

 Input c1 = (c10, c11) and c2 = (c20, c21) . 

 Output cadd = ([c10 + c20]q, [c11 + c21]q) . 

 

(6). FV.ReLin: 

 Input (b, a) = ek and ĉmult= (c0, c1, c2). 

 Output ciphertext ( [c0 + ‹WordDecompw,q (c2),b›]q , [c1 

+  ‹WordDecompw,q  (c2), a›]q ), where 

WordDecompw,q(a) = ([ai ]w) lw,q−1 
i=0 ∈ Rlw,q . 

 

(7). FV.Mult : 

 Input c1, c2, ek. 

 Output cmult = FV.ReLin (ĉmult , ek). 

 

Fully Homomorphic Scheme YASHE 

A fully homomorphic encryption scheme is introduced in 

[18] based on modified NTRU by Stehl´e and Steinfeld 

[20] and the multi-key fully homomorphic encryption 

scheme presented in [16]. A brief description of the 

scheme is illustrated below. 

 

Algorithm: 

(1). YASHE.ParamsGen(λ) :  

 Inputs security parameter λ. 

 Set a positive integer d. 

 Determine R, moduli q and t, 1< t < q, distributions 

χkey, χerr on R, and an integer base w > 1. 

 Output params = (d,q,t, χkey, χerr, w). 

 

(2). YASHE.KeyGen: 

 Inputs params 

 Sample f’, g ← χkey. Let f = [tf’ + 1]q .If f not invertible 

mod q, choose a new f’. 

 Compute the inverse f −1 ∈ R of f mod q. 

 Set h = [tgf-1 ]q . 

 Sample e, s ← χlw,q 
err and compute γ = [PowersOfw,q(f) 

+ e + h · s]q ∈ Rlw,q where PowersOfw,q(a) = ([awi ]q) 
lw,q−1 i=0 ∈ Rlw,q . 

 Output (pk,sk, evk) = (h, f, γ). 

 

(3). YASHE.Encrypt: 

 Input (h, m), m ∈ R/tR. 

 Sample s, e ← χerr  . 

 Output c = ( [∆[m]t + e + hs]q ) ∈ R. 
 

(4). YASHE.Decrypt: 

 Input (f, c). 

 Output m = [
t

q
 .[f c]q]t ∈ R. 

 

(5). YASHE.Add: 

 Inputs (c1, c2) 

 Output cadd = [c1 + c2]q . 
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(6). YASHE.KeySwitch: 

 Inputs (ĉmult , ek) 

 Output ciphertext [‹WordDecompw,q (ĉmult), ek›]q  , 

where WordDecompw,q(a) = ([ai ]w) lw,q−1 
i=0 ∈ Rlw,q . 

 

(7). YASHE.Mult: 

 Inputs (c1, c2, ek) 

 Output ciphertext cmult = YASHE.KeySwitch(ĉmult , ek) 

where ĉmult = [
t

q
 .c1c2]q . 

 
Implementation: 

Researchers from Microsoft presented a more complete 

and accurate encryption scheme using YASHE algorithm 

with a small variant in the form of a library SEAL (Simple 

Encrypted Arithmetic Library) [22]. In another work, 

Gilad-Bachrach, Ran, et al. [23] discussed an 

implementation for applying neural network on encrypted 

data with high throughput and accuracy. 

 

Limitation: 

One of the main drawback found is the inability to stay in 
Double-CRT form during multiplication, at the cost of 

computation overhead. Despite being more elegant and 

less memory consuming, the benefits of scale-invariant 

schemes are still questioned [21]. 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

VI. CONCLUSION 

 

The security of Cloud Computing based on homomorphic 

has gained attention in recent years. It provides potential 

for carrying out large-scale computations and storage, 
statistical analysis and query processing directly on 

encrypted forms of private data, thus respecting the 

confidentiality of the data. 

 

This paper analyzes some prominent homomorphic 

schemes (RSA, El Gamal, Pallier, Gentry's, DGHV, BGV, 

FV, and YASHE) and their significance and approach in 

context to application in cloud computing. Finally, a 

comparative table is constructed based on their class of 

operation (partial, somewhat, leveled fully), underlying 

approach and problems. 
 

Fully homomorphic encryption is a promising aspect in 

cryptography. Despite its interesting properties, it is quite 

limited regarding its computation abilities and practical 

implementations. Future work of this research is planned 

towards experimenting these techniques in the cloud 

environment and analyzes them based on the time of 

response of the cloud for different key sizes. 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

TABLE 2: Comparision of Homomorphic Encryption (HE) Schemes 

 
HE Scheme Type HE Operation Underlying Principle Concern 

RSA Partial HE  Addition  Factoring problem of 

product of  large primes 

Not semantically 

secure 

ELGAMAL Partial HE Multiplication Discrete Logarithms Impractical for 

addition 

PAILLIER Partial HE Addition Decisional composite 

residuosity assumption 

Does not support 

multiplication 

Gentry’s 

FHE 

First fully 

HE 

Any circuit Lattice-Based using 

Bootstrapping 

 Implementation is 

impractical 

DGHV Some- 

What HE 

Circuit up to a 

certain depth 

Modular Arithemetic & 

Approximate GCD 

Key size is too 

large( ~260  bits) 

 
 

 

 

 

BGV Leveled 

FHE 

Any circuit Modulus switching & LWE, 

RLWE 

Large memory 

requirement for 

storing multiple 

keys 

FV Leveled 
FHE 

Any circuit Scale invariant RLWE on 
BGV 

Inability to stay in 
double CRT form 

YASHE Leveled 

FHE 

Any circuit Scale invariant RLWE on 

NTRU 

Inability to stay in 

double CRT form 
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