
IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 7, July 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5759 294

Homomorphic Encryption Algorithms for

Securing Data against Untrusted Cloud

Gaurav Somani
1
, Sourabh Garg

1

Department of Mathematical Sciences, Indian Institute of Technology BHU, Varanasi, India 1

Abstract: Cloud Computing has revolutionized businesses and individuals needs by outsourcing computations and

storage providing significant cost-effectiveness and flexibility. With its rapid development, the security and privacy are

the primary concerns. The homomorphic encryption techniques have provided a good potential in mitigating these

issues in recent years. It allows the cloud to perform blind-computations on the encrypted inputs uploaded by the user

without prior decryption and return the encrypted results, which can only be decrypted by the user who initiates the

proceedings. Thus, clients can rely on the cloud services without compromising the privacy. Some classical, as well as

recent practical homomorphic schemes and their algorithms, are discussed in this paper. The main focus is to provide

the reader good background knowledge on various schemes for applications in context to practical implementations

based on their scope, performance, security and complexity factors.

Keywords: Homomorphic encryption, Cloud Security, FHE schemes, LWE.

I. INTRODUCTION

Cloud computing is termed as “platform for future’s

computation”. The global computing infrastructure is

rapidly moving towards cloud based architecture so as to

expand their business. It seems to give a number of

benefits like flexibility, efficiency, scalability, integration,

and capital reduction. But security is one of the main

challenges that hinder the growth of cloud computing.

Researchers and Service provider are trying out different
techniques to gain the trust from clients [1]. Some

malicious elements always try to peek inside its

architecture. Due to this, a client considers cloud platform

as a threat and wants to keep his data confidential even

from a service provider. A possible solution is to perform

encryption such that, computation can be directly applied

to encrypted data by cloud services. Homomorphic

encryption provides a great potential for the privacy and

encrypted computations in the cloud. This paper is aimed

at providing the reader background knowledge about

various homomorphic schemes for their application in the

cloud ecosystem.

In Section II, we briefly introduce cloud computing, its

basic services, and the security concerns related to it.

Section III presents the basics of homomorphic encryption

and its properties. Later in Section IV and V, we present a

comparative literature survey on the limited homomorphic

encryption algorithms and FHE schemes with their

limitations respectively.

II. CLOUD COMPUTING AND SECURITY

Before the advent of Cloud terminology, the computing

was done using “outsourcing” and “server hosting”.

However, their performances were low in terms of cost

and maintenance of hardware and computing resources.

With the recent developments in Virtualization technology

paved the way for efficient, on-demand, cost-effective

services in the cloud [1].

In a typical cloud architecture, the resources are generally

owned by a service provider with remote access to users

via the internet or a private network. The resources are

powered by distributed and parallel computing
incorporating to each other's IT infrastructures (hardware,

platform, software). Thus providing quick, convenient

data storage and net computing service with reliance on

the Internet.

There are three standard service models as per NIST for

cloud computing [2]:

 Software as a Service (SaaS): This is software

distribution model. The applications are hosted by the

service providers and offered as a subscription to the

users via the Internet. It is accessible via various
interfaces and provider does not manage or control the

underlying cloud infrastructure.

 Platform as a Service (PaaS): This refers to the delivery

of operating systems and relevant services over the

Internet without downloads or installation. The user

can deploy their applications using these services and

tools by the provider. The user has no manage or

control over the underlying cloud infrastructure.

 Infrastructure as a Service (IaaS): This involves

outsourcing the physical infrastructures used for

storage, hardware, support operations and network
components accessible over a network. The user has no

manage or control over the underlying cloud

infrastructure but has some control over OS and

storage.

IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 7, July 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5759 295

Although Cloud computing has become a matured service

model, but it still has some significant barriers to adoption.

One of the main concerns are issues related to security and

privacy. The SaaS, PaaS, and IaaS gradually release the

responsibility of security control to the cloud users in
order. The SaaS model relies on the cloud provider for all

security functions while the PaaS model on the provider to

for data integrity and availability, but loads the user for

confidentiality and privacy control. These leads to two

sensitive states that are a concern in the operational

context of cloud computing:

 Transmission phase – transfer of the sensitive data to

and from the cloud servers and the client systems.

 Static phase – the storage and operations performed in

cloud servers on the client’s personal data.

Fig 1: Secure Cloud computing using Homomorphic

scheme

The channel of data transmission is well secured with

cryptographic key exchanges. The cloud user can encrypt

the data and store it in the cloud, however, both the user

and the cloud would not be able to operate any

computations on data before decrypting it, moreover the
cloud provider will not be able to respond to users' queries

before decrypting the data first. Considering cloud can be

untrustworthy, the client would not consider it reliable

over accessing their personal data.

The power that homomorphic encryption brings to

preserve privacy in cloud computing is its ability to

perform computations on the encrypted data without the

need for decrypting it and users to retrieve results that can

only be decrypted using his secret key

III. HOMOMORPHIC ENCRYPTION

This section presents an introduction to the homomorphic

encryption, its terminologies, and notations.

A. Background on Encryption

Let a message m ∈ M where M denotes the message space

and σ be the security parameter. A public-key encryption

scheme on M is based on a set of three functions (K, E, D)

of probabilistic, polynomial time satisfying the following

functionalities:

 Key Generation: Based on security parameter the

algorithm K outputs a key pair k = pk, sk , where pk
denotes the encryption key/ public key and sk being the

decryption key /secret key.

 Encryption: The encryption algorithm E inputs a

message m ∈ M and a public key pk, outputs a

ciphertext E m, pk = c ∈ C, where C denotes the

ciphertext space.

 Decryption: The decryption algorithm D inputs a

ciphertext c ∈ C and a secret key sk, outputs the

message D c, sk = m ∈ M.

B. Homomorphic Property

In mathematics, homomorphic describes the

transformation of one data set into another while

preserving relationships between elements in both sets.

Hence, performing encryption homomorphically will yield

equivalent results whether they are performed in encrypted

or decrypted data.

More precisely, an encryption scheme is said to be

homomorphic for some operations ◦ ∈ M acting in
message space M (such as addition) if there are

corresponding operations ⋄ ∈ C acting in cipher text space

satisfying the property [5]:

Dec(sk, Enc(pk,m1) ⋄ Enc(pk,m2)) = m1 ◦ m2

If the operation ◦ ∈ M is additive {+}, then the scheme is

said to be additively homomorphic and multiplicative

homomorphic if ◦ ∈ M is multiplicative {*}.

The evaluation algorithm Eval inputs ciphertexts c1, c2

outputs c3 = Eval(c1, c2) such that D(c3, sk) = m3, where

m3 = m1◦ m2 , the desired message according to operation
applied.

IV. LIMITED HOMOMORPHIC ENCRYPTION

In this section we look at classical homomorphic

encryption schemes limited to partial operations namely,

either additive or multiplicative such as RSA, Pallier, El

Gamal schemes and discuss their properties and

algorithms.

A. RSA Cryptosystem
Before RSA was developed, the symmetric ciphers were

used to encrypt, send and decrypt a message using a single

key. It was possible that intruder may attack, it requires

the users to send the key hand to hand, which is not

possible always. Solution to this problem comes when

RSA was invented.

RSA was the first public–key cryptosystem which uses

two keys, the first public key which is known to everyone

is used to encrypt a message, and second a secret key,

which only target user holds and with its help only, he can

decrypt the encrypted message. Basic RSA is a

multiplicatively homomorphic encryption scheme and is

deterministic in the sense that under a fixed public key, a

IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 7, July 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5759 296

plaintext m is always encrypted to the same ciphertext

E(m). It is widely used to transmit data securely. It was

introduced by Rivest, Shamir, and Adleman [6].

Algorithm:
(1). Key Generation:

 Generate two large distinct prime numbers, p, and q

(should be similar in magnitude).

 Compute n=p*q, where n is the key(both) length

 Compute Euler’s totient function on n,

υ(n) = υ(p)υ(q) = (p − 1)(q − 1) = n − (p + q − 1)

 Choose a number e ,s.t e must lie between (1, υ(n)),&

i and υ(n) are coprime; i.e. gcd(e, υ(n)) = 1.

 Compute modular multiplicative inverse of e modυ(n)

i.e. e−1 (mod υ(n)) and name it d, d.e=1(mod

υ(n),equivalent to d.e =k.υ(n) + 1.

 Now pk = e and sk = d with n as the common modulus.

(2). Encryption:

 Let M be the message and (e,n) be the public key

 First, convert M into an integer m s.t. m є [0,n) &

gcd(m,n)=1.

 Compute ciphertext , E(m)=me(mod n)

(3).Multiplicative Homomorphic operation :

 Let E(m1) and E(m2) be the two ciphertext , E(m1)=

m1e(mod n)E(m2)= m2e(mod n)

 E(m1).E(m2) = m1e. m2e (mod = (m1 ∙ m2)e mod n

=c3, where c3 is the encryption of (m1.m2) .

(4).Decryption:

 Cipher text c,when raised to the power d(private key)

with (mod n) gives the required message

 E(m) d=(me.d)mod n =(mk.υ(n)+1)mod n = ((mυ(n)) k

.m)mod n ≡ 1k .m (mod n) = m (using Euler and Fermat

theorem, for any integer M coprime to n, we have , M
υ(n) ≡ 1 (mod n)))

Limitation:

It is not semantically secure. It is a relatively slow

algorithm and even when the public key is very large

enough, someone with knowledge of prime numbers can

easily retrieve the actual message from the encrypted

message.

B. Elgamal (Multiplicative Homomorphic encryption)

It is a partially homomorphic public key encryption

algorithm as it supports only multiplicative homomorphic

property and is based on the Diffe-Hellman key exchange.
It was designed by Taher Elgamal [7].

Algorithm:

(1). Key generation:

 Generate a large prime p, s.t (p-1) is divisible by

another large prime q.

 Compute a generator g of the multiplicative group

of order q in GF(p) via (for some random r) g ≡ r (p-

1)/qmod p until g≠1.

 Select a natural number 'a' in range of q

 Compute h≡g
a
(mod p)

 Now, pk=(p,g,h) and sk = a

(2). Encryption:

 Generate a random number k (1 < k < q − 1) with

gcd(k, p − 1) = 1

 Compute r ≡ g k mod p and s ≡ hk ·m (mod p) (0 ≤ m

≤ p − 1)

 Ciphertext : c= E(m)=(r,s)

(3). Homomorphic operation:

 Let E(m1) and E(m2) be two cipher texts
 E(m1).E(m2)=(gr1, m1.hr1) (gr2, m2.hr2)= (gr1+r2,

(m1.m2) hr1+r2) = E(m1.m2)

(4). Decryption:

 Compute: m ≡ s·r -amod p (r -a ≡ g-ka ≡ h -k mod p)

Limitation:

This homomorphism is multiplicative whereas practical

such as E-cash and e-voting application requires addition

also. One solution to this to Modify ElGamal : Put the

plaintext in the exponent, E(m)=(r≡ g k (mod p) ,s≡ hk ·gm

(mod p)) . This modification introduces the discrete

logarithm problem dk = gm into the decryption. For large

enough texts, this becomes impractical.

C. Paillier(Additive Homomorphic encryption)

It is a probabilistic, additive homomorphic encryption

algorithm and invented by Pascal Paillier in 1999. It is

based on decisional composite residuosity assumption [8].

Algorithm:

(1). Key generation:

 Choose two large prime number p and q

 Compute n= p.q and y= lcm(p-1,q-1)

 Choose random number g where g є Zn

 Check the existence of modular multiplicative inverse :

 u=(L(gy mod n2))-1 mod n

 pk = (n,g) and sk = (y,u)

(2). Encryption:

 Choose an integer “r”

 Compute c = E(m)= gm .rn(mod n2)

(3).Homomorphic operation:

 E(m1).E(m2)=(gm1 .r1n)(gm2 .r2n)mod n2 = g(m1+m2)

(r1.r2)n mod n2 =E(m1+m2)

(4). Decryption:

 Compute: m = L(c
y
 mod n 2)/ L(g

y
 mod n2) mod n

=L(cy mod n 2).u mod n

Limitation

It supports only addition cryptographically, and for

multiplication, it requires to use two-party computation

which makes it dependent and even are limited in number.

IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 7, July 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5759 297

V. FULLY HOMOMORPHIC ENCRYPTION

Classical homomorphic encryption schemes described in

the previous section supports some operations on

ciphertext (e.g. addition, multiplication, quadratic
function. etc.), whereas fully homomorphic encryption

support arbitrary computation. As it never requires to

decrypt its input, it creates practical opportunity to

outsource private computation of client's sensitive data on

a untrusted third party.

A. Gentry’s Cryptosystem

Gentry's scheme supports both addition and multiplication

operations on ciphertexts. Using these elementary

operations, any function can be computed. It is based on

lattices.

It is limited to some extent, as noise increase exponentially

and when it reaches a threshold, resulting ciphertext is

indecipherable. Gentry introduced bootstrappable

somewhat homomorphic encryption which refreshes the

ciphertext repeatedly, resulting in a new ciphertext with

lower noise [9].

Algorithm:

(1).Key Generation:

 Takes as input a security parameter λ and a positive

integer d as the depth of circuit . For length, l = l(λ) .

 Sets (ski, pki) ← KeyGen (λ) for i ∈ [0, d]

 skij ← EncryptE (pki-1 , skij) for i ∈ [1, d], j ∈ [1, l`]
where ski1, . . , skil` is the bit representation of ski .

 sk(d) = sk0 and pk(d) ← (<pki >,<skij >).

(2).Encryption:

 Input a public key pkd and a plaintext π ∈ P.

 Ciphertext ψ ← Encrypt (pkd , π).

(3).Decryption:

 Input a secret key skd and a ciphertext ψ (which should

be an encryption under pk0).

 Outputs Decrypt (sk0, ψ).

(4).Evaluation:

 Takes as input a public key pkυ , a circuit Cυ of depth

at most υ gates , and a tuple of input ciphertexts Ψυ

(where each input ciphertext should be under pkυ).

 Check if each wire in Cυ connects gate at consecutive
levels; if not add identity gates .

 If υ=0 , it outputs , ψ0 and terminates,

Else

- Sets (Cϯ
υ-1 ,ψ

ϯ
υ-1)←Augment υ(pkυ ,Cυ, ψυ)

- Sets (Cυ-1 ,ψυ-1)←Reduceυ-1(pkυ ,Cυ, ψυ)

- Evaluateυ-1 (pkυ-1 ,Cυ-1, ψυ-1)

(5). Augmentυ :

 Takes as input a public key pkυ , a circuit Cυ of depth

at most υ gates , and a tuple of input ciphertexts Ψυ

(where each input ciphertext should be under pkυ).

 Let ψϯ
υ-1 be the tuple of cipher texts formed by

replacing each input ciphertext ψ ∈ ψυ by the tuple (skυ

, ψυ), where ψj ← Encrypt ((pkυ-1), ψj) and the ψj 's

from the properly-formatted representation of ψ as
elements of P. It outputs (Cϯ

υ-1 ,ψ
ϯ
υ-1).

(6). Reduceυ :

 Takes as input a public key pkυ , a circuit Cυ of depth

at most υ gates , and a tuple of input ciphertexts Ψυ .

 sets Cυ to be the sub-circuit of Cϯ
υ consisting of the

first υ levels

 sets ψυ to be the induced input ciphertext of Cυ .

Limitation:

The scheme is impractical, as increasing key size results in
a large jump in the graph of ciphertext size and thus, the

computation time.

B. DGHV (Somewhat) Homomorphic Scheme

Van Dijk, Gentry, Halevi and Vaikuntanathan’s (DGHV)

scheme[10] described a conceptually simpler “somewhat

homomorphic” using only modular arithmetic over the

integers. The security of the scheme is reduced to finding

an approximate integer greatest common divisors

(approximate GCD) problem. This scheme can be applied

to Gentry’s “blueprint” for constructing fully

homomorphic schemes out of certain somewhat
homomorphic schemes specifically, by “squashing the

decryption circuit” and applying Gentry’s bootstrapping

theorem. Depending upon the security parameter λ, the

scheme uses polynomials in λ as four parameters:

γ - bit-length of the integers in the public key pk,

η - bit-length of the secret key,

ρ - bit-length of the noise in KeyGen,

ρ’- bit-length of the noise in Encrypt (secondary noise

parameter),

τ - number of integers in the public key.
The parameters must follow the following constraints [10]:

 ρ = ω(log λ), to protect against brute-force attacks on

the noise;

 η ≥ ρ · Θ(λ log2 λ), in order to support homomorphism

for deep enough circuits to evaluate the “squashed

decryption circuit”;

 γ = ω(η 2 log λ), to thwart various lattice-based attacks

on the underlying approximate-gcd problem;

 τ ≥ γ + ω(log λ), (see Lemma 4.3 in [DGHV10]);

 ρ’ = ρ + ω(log λ), used as secondary noise parameter.

A suitable set of parameters is ρ = λ, ρ’ = 2λ, η = O(λ2), γ

= O(λ 5) and τ = γ + λ.

Definition (approximate GCD): Given polynomially many

samples from Dγ,ρ(p) for a randomly chosen η-bit odd

integer p, output p.

Dγ,ρ(p) = {choose q ← Z ∩ [0, 2 γ /p), r ← Z ∩ (−2 ρ , 2 ρ

) : output x = pq + r }.

IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 7, July 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5759 298

Algorithm:

(1). KeyGen(λ): The secret key is a random odd η-bit

integer:

 sk := p ∈ (2Z + 1) ∩ [2η−1 , 2 η).
 For the public key,

 sample xi ∈ Dγ,ρ(p) for i = 0, . . . , τ .

 Relabel xi so that x0 is the largest.

 Restart unless x0 is odd and rp(x0) is even. The

public key is pk = {x0, x1, . . . , xτ}.

(2). Encrypt (pk, m ∈ {0, 1}) = c.

 Choose a random subset S ⊆ {1, 2, . . . , τ},

 A random integer r in Z ∩ (−2ρ ′ , 2ρ ′),

 Compute ciphertext c = (m + 2r0 + 2∑i∈S xi) mod x.

(3). Evaluate(pk, C, c1, . . . , ct) = c*:

 Given the (binary) circuit CE with t inputs, and t

ciphertexts ci, apply the addition and multiplication

operations on the ciphertext according to the circuit

CE, and return the resulting integer.

(4). Decrypt(sk, c) = m
Output m′ = (c mod p) mod 2.

Limitation:

This was fairly an easy scheme as it used only elementary

modular arithmetic rather than lattice based encryption to

generate FHE. Some open problems posed by the scheme

were related to compressing the squashing and improving

the efficiency while preserving the hardness of the

approximate-gcd problem. The size of the public key pk is

around 260 bits which was its main drawback.

C. BGV (Leveled) Fully Homomorphic Encryption
The resulting performance out of Gentry’s bootstrapping

were unsatisfactory and all the existing FHE schemes gave

exponential noise growth with depth of the circuit

requiring almost Ω (λ
3.5

) computation per gate. Brakerski,

Gentry, and Vaikuntanathan introduced the notion of

leveled fully homomorphic encryption schemes [11]. The

scheme constructs a much effective approach for lattice-

based ciphertext using FHE schemes based on LWE

(learning with errors) or ring LWE (RLWE) problems that

have 2λ security reducing the per-gate computation to O(λ.

L3) , O(λ2) and O(λ) respectively as described in table 1.

Typically, BGV proved to be the first scheme practical in

real-life applications. It describes several improvements to

Gentry's original work namely, modulus switching and re-

linearisation techniques for reducing the noise growth in

multiplication and to growth in ciphertext sizes as shown

in table 1.

Definition - Generalised Learning with Errors(GLWE):

For security parameter λ, let n = n(λ) be an integer

dimension, let f(x) = x d + 1,d = d(λ) is a power of 2, let q

= q(λ) ≥ 2 be a prime integer, let R = Z[x]/(f(x)) and Rq =
R/qR, and let χ = χ(λ) be a distribution over R. The

GLWEn,f,q,χ problem is to distinguish the following two

distributions: In the first distribution, one samples (ai, bi)

uniformly from Rq
 n+1 . In the second distribution, one first

draws s ← R n
 q uniformly and then samples (ai, bi) ∈ Rq

 n+1

by sampling ai ← R n q uniformly, ei ← χ, and setting bi =
‹ai, s› + ei. The GLWEn,f,q,χ assumption is that the

GLWEn,f,q,χ problem is infeasible.

TABLE 1: Classifying versions of BGV measured on the

basis of security parameter λ [11].

FHE

before

BGV

Bootstrapping Ω(λ 3.5) Exponential

Leveled

BGV 1

Without

bootstrapping

O(λ. L3) Quasi-

linear

Leveled

BGV 2

With boot

strapping as

optimization

O(λ2)

independent

of depth L

Quasi-

polynomial

Leveled
BGV 3

Batched
bootstrapping

O(λ)
independent

of depth L

Linear

Algorithm:
 (1). E.Setup:

 Input security parameter λ, a number of levels L, and a

bit b ∈ {0, 1} for deciding between LWE or RLWE

 Choose µ-bit modulus q for parameters d = d(λ, µ, b), n

= n(λ, µ, b), and χ = χ(λ, µ, b).

 R = Z[x]/(x d + 1) and params = (q, d, n, N, χ)

(2). E.SecretKeyGen:

 Input params

 Sample s’← χn

 Set sk = s ← (1, s’[1], . . . , s’[n]) ∈ R n+1
q.

(3). E.PublicKeyGen:

 Inputs params and sk

 Generate matrix A’ ← R
NxM

q and vector e ← χ
N

.

 Set b ← A’s’ + 2e, A to be (n+1)-columned consisting

of b followed by n columns from –A’.

 Set the public key pk = A.

(4). E.Encrypt :

 Input params, pk, and message m ∈ R2 .

 Set m ← (m,0,…….,0) ∈ R n+1
q .

 Sample r ← RN
2 .

 Output ciphertext c ← m + AT r ∈ R n+1
q .

(5). E.Decrypt :

 Output m ← [[(c,s)]q]2 .

Implementation:

Halevi and Shoup’s HElib implemented the BGV scheme

and proved to be the foremost among all the

implementations [13]. Several optimizations such as

ciphertext packing have been introduced to make

homomorphic encryption practically faster. In 2014,

bootstrapping was introduced in the library [14]. Multi-

threading support was provided in March 2015.

IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 7, July 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5759 299

Limitations:

The BGV scheme was performed on homomorphic

evaluation of the AES circuit [15]. But to evaluate the

circuit using the modulus switching technique, the public

key required multiple versions evaluation-keys that need
to be shared between the client (data owner) and the

server(computing entity). Hence, very large memory

requirements for storing the public key.

D. Towards Scale Invariant Fully Homomorphic

Encryption

Brakerski provided a new notion of scale-invariance for

leveled homomorphic encryption schemes[12]. Unlike

modulus switching, the cipher-texts in this scheme keep

the same modulus during the whole homomorphic

evaluation and only one scale invariant evaluation key has
to be stored.

This technique has been adapted to the BGV scheme by

Fan and Vercauteren [17] called as FV scheme and to

L´opez-Alt, Tromer and Vaikuntanathan’s scheme [16] by

Bos, Lauter, Loftus, and Naehrig [18] called as YASHE

scheme respectively. A comparative work has been

theoretically done and applied on a lightweight block

cipher SIMON between both the scheme [19]. It is

observed that FV has a smaller noise growth as compared

to YASHE while the latter is faster in terms of

performance.

Fully Homomorphic Scheme FV

Fan and Vercauteren [17] applied the scale- invariant

technique introduced by Brakerski in [12] to the RLWE.

Using the message encoding as in RLWE encryption

scheme, we can avoid the modulus switching to obtain a

leveled homomorphic encryption scheme. A brief

description is given below.

Algorithm:

(1).FV.ParamsGen:

 Inputs security parameter λ.

 Set a positive integer d.

 Determine R, moduli q and t, distributions χkey, χerr on

R, and an integer base w > 1.

 Output params = (d,q,t, χkey, χerr, w).

(2). FV.KeyGen:

 Input params.

 Sample s ← χkey, a ← Rq(uniformly,random), e ← χerr

 Compute b = [-(as + e)]q .

 Sample , a ← Rq
lw,q (uniformly,random), e ← χerr

lw,q .

 Compute γ = ([PowersOfw,q(s
2) − (e + a · s)]q, a) ∈ Rq

lw,q .

 Output (pk, sk, ek) = ((b, a), s, γ).

(3). FV.Encrypt:

 Input ((b, a), m), m ∈ R/tR.

 Sample u ← χkey, e1 and e2 ← χerr .

 Output c = ([∆[m]t + bu + e1]q, [au + e2]q) ∈ R2 .

(4). FV.Decrypt:

 Input s, c = (c0, c1).

 Output m = = hj t q · [c0 + c1s]q mi t ∈ R

(5). FV.Add:

 Input c1 = (c10, c11) and c2 = (c20, c21) .

 Output cadd = ([c10 + c20]q, [c11 + c21]q) .

(6). FV.ReLin:

 Input (b, a) = ek and ĉmult= (c0, c1, c2).

 Output ciphertext ([c0 + ‹WordDecompw,q (c2),b›]q , [c1

+ ‹WordDecompw,q (c2), a›]q), where

WordDecompw,q(a) = ([ai]w) lw,q−1
i=0 ∈ Rlw,q .

(7). FV.Mult :

 Input c1, c2, ek.

 Output cmult = FV.ReLin (ĉmult , ek).

Fully Homomorphic Scheme YASHE

A fully homomorphic encryption scheme is introduced in

[18] based on modified NTRU by Stehl´e and Steinfeld

[20] and the multi-key fully homomorphic encryption

scheme presented in [16]. A brief description of the

scheme is illustrated below.

Algorithm:

(1). YASHE.ParamsGen(λ) :

 Inputs security parameter λ.

 Set a positive integer d.

 Determine R, moduli q and t, 1< t < q, distributions

χkey, χerr on R, and an integer base w > 1.

 Output params = (d,q,t, χkey, χerr, w).

(2). YASHE.KeyGen:

 Inputs params

 Sample f’, g ← χkey. Let f = [tf’ + 1]q .If f not invertible

mod q, choose a new f’.

 Compute the inverse f −1 ∈ R of f mod q.

 Set h = [tgf-1]q .

 Sample e, s ← χlw,q
err and compute γ = [PowersOfw,q(f)

+ e + h · s]q ∈ Rlw,q where PowersOfw,q(a) = ([awi]q)
lw,q−1 i=0 ∈ Rlw,q .

 Output (pk,sk, evk) = (h, f, γ).

(3). YASHE.Encrypt:

 Input (h, m), m ∈ R/tR.

 Sample s, e ← χerr .

 Output c = ([∆[m]t + e + hs]q) ∈ R.

(4). YASHE.Decrypt:

 Input (f, c).

 Output m = [
t

q
 .[f c]q]t ∈ R.

(5). YASHE.Add:

 Inputs (c1, c2)

 Output cadd = [c1 + c2]q .

IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 7, July 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5759 300

(6). YASHE.KeySwitch:

 Inputs (ĉmult , ek)

 Output ciphertext [‹WordDecompw,q (ĉmult), ek›]q ,

where WordDecompw,q(a) = ([ai]w) lw,q−1
i=0 ∈ Rlw,q .

(7). YASHE.Mult:

 Inputs (c1, c2, ek)

 Output ciphertext cmult = YASHE.KeySwitch(ĉmult , ek)

where ĉmult = [
t

q
 .c1c2]q .

Implementation:

Researchers from Microsoft presented a more complete

and accurate encryption scheme using YASHE algorithm

with a small variant in the form of a library SEAL (Simple

Encrypted Arithmetic Library) [22]. In another work,

Gilad-Bachrach, Ran, et al. [23] discussed an

implementation for applying neural network on encrypted

data with high throughput and accuracy.

Limitation:

One of the main drawback found is the inability to stay in
Double-CRT form during multiplication, at the cost of

computation overhead. Despite being more elegant and

less memory consuming, the benefits of scale-invariant

schemes are still questioned [21].

VI. CONCLUSION

The security of Cloud Computing based on homomorphic

has gained attention in recent years. It provides potential

for carrying out large-scale computations and storage,
statistical analysis and query processing directly on

encrypted forms of private data, thus respecting the

confidentiality of the data.

This paper analyzes some prominent homomorphic

schemes (RSA, El Gamal, Pallier, Gentry's, DGHV, BGV,

FV, and YASHE) and their significance and approach in

context to application in cloud computing. Finally, a

comparative table is constructed based on their class of

operation (partial, somewhat, leveled fully), underlying

approach and problems.

Fully homomorphic encryption is a promising aspect in

cryptography. Despite its interesting properties, it is quite

limited regarding its computation abilities and practical

implementations. Future work of this research is planned

towards experimenting these techniques in the cloud

environment and analyzes them based on the time of

response of the cloud for different key sizes.

TABLE 2: Comparision of Homomorphic Encryption (HE) Schemes

HE Scheme Type HE Operation Underlying Principle Concern

RSA Partial HE Addition Factoring problem of

product of large primes

Not semantically

secure

ELGAMAL Partial HE Multiplication Discrete Logarithms Impractical for

addition

PAILLIER Partial HE Addition Decisional composite

residuosity assumption

Does not support

multiplication

Gentry’s

FHE

First fully

HE

Any circuit Lattice-Based using

Bootstrapping

 Implementation is

impractical

DGHV Some-

What HE

Circuit up to a

certain depth

Modular Arithemetic &

Approximate GCD

Key size is too

large(~260 bits)

BGV Leveled

FHE

Any circuit Modulus switching & LWE,

RLWE

Large memory

requirement for

storing multiple

keys

FV Leveled
FHE

Any circuit Scale invariant RLWE on
BGV

Inability to stay in
double CRT form

YASHE Leveled

FHE

Any circuit Scale invariant RLWE on

NTRU

Inability to stay in

double CRT form

IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 7, July 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5759 301

REFERENCES

[1] Winkler, Vic JR. Securing the Cloud: Cloud computer Security

techniques and tactics. Elsevier, 2011.

[2] Mell, Peter, and Tim Grance. "The NIST definition of cloud

computing." (2011).

[3] Hashizume, Keiko, et al. "An analysis of security issues for cloud

computing."Journal of Internet Services and Applications 4.1

(2013): 1.

[4] Patrascu, Alecsandru, Diana Maimu, and Emil Simion. "New

Directions in Cloud Computing: A Security

Perspective." Communications (COMM), 2012 9th International

Conference on. 2012.

[5] Aslett, Louis JM, Pedro M. Esperança, and Chris C. Holmes. "A

review of homomorphic encryption and software tools for

encrypted statistical machine learning." arXiv preprint

arXiv:1508.06574 (2015).

[6] Rivest, Ronald L., Len Adleman, and Michael L. Dertouzos. "On

data banks and privacy homomorphisms." Foundations of secure

computation 4.11 (1978): 169-180.

[7] ElGamal, Taher. "A public key cryptosystem and a signature

scheme based on discrete logarithms." Workshop on the Theory and

Application of Cryptographic Techniques. Springer Berlin

Heidelberg, 1984.

[8] Paillier, Pascal. "Public-key cryptosystems based on composite

degree residuosity classes." International Conference on the Theory

and Applications of Cryptographic Techniques. Springer Berlin

Heidelberg, 1999.

[9] Gentry, Craig. A fully homomorphic encryption scheme. Diss.

Stanford University, 2009.

[10] Van Dijk, Marten, et al. "Fully homomorphic encryption over the

integers."Annual International Conference on the Theory and

Applications of Cryptographic Techniques. Springer Berlin

Heidelberg, 2010.

[11] Brakerski, Zvika, Craig Gentry, and Vinod Vaikuntanathan.

"(Leveled) fully homomorphic encryption without

bootstrapping." Proceedings of the 3rd Innovations in Theoretical

Computer Science Conference. ACM, 2012.

[12] Brakerski, Zvika. "Fully homomorphic encryption without modulus

switching from classical GapSVP." Advances in Cryptology–

CRYPTO 2012. Springer Berlin Heidelberg, 2012. 868-886.

[13] Halevi, Shai, and Victor Shoup. "Algorithms in helib." International

Cryptology Conference. Springer Berlin Heidelberg, 2014.

[14] Halevi, Shai, and Victor Shoup. "Bootstrapping for helib." Annual

International Conference on the Theory and Applications of

Cryptographic Techniques. Springer Berlin Heidelberg, 2015.

[15] Gentry, Craig, Shai Halevi, and Nigel P. Smart. "Homomorphic

evaluation of the AES circuit." Advances in Cryptology–CRYPTO

2012. Springer Berlin Heidelberg, 2012. 850-867.

[16] López-Alt, Adriana, Eran Tromer, and Vinod Vaikuntanathan. "On-

the-fly multiparty computation on the cloud via multikey fully

homomorphic encryption." Proceedings of the forty-fourth annual

ACM symposium on Theory of computing. ACM, 2012.

[17] Fan, Junfeng, and Frederik Vercauteren. "Somewhat Practical Fully

Homomorphic Encryption." IACR Cryptology ePrint Archive 2012

(2012): 144.

[18] Bos, Joppe W., et al. "Improved security for a ring-based fully

homomorphic encryption scheme." IMA International Conference

on Cryptography and Coding. Springer Berlin Heidelberg, 2013.

[19] Lepoint, Tancrede, and Michael Naehrig. "A comparison of the

homomorphic encryption schemes FV and YASHE." International

Conference on Cryptology in Africa. Springer International

Publishing, 2014.

[20] Stehlé, Damien, and Ron Steinfeld. "Making NTRU as secure as

worst-case problems over ideal lattices." Annual International

Conference on the Theory and Applications of Cryptographic

Techniques. Springer Berlin Heidelberg, 2011.

[21] Barthelemy, Lucas. “A brief survey of Fully Homomorphic

Encryption, computing on encrypted data” Quarkslab’s blog, 29

June 2016. Web.

[22] Dowlin, Nathan, et al. Manual for using homomorphic encryption

for bioinformatics. Technical report MSR-TR-2015-87, Microsoft

Research, 2015.

[23] Gilad-Bachrach, Ran, et al. "CryptoNets: Applying Neural

Networks to Encrypted Data with High Throughput and

Accuracy." Proceedings of The 33rd International Conference on

Machine Learning. 2016.

